
Optimal modulation of a Brownian ratchet and 
enhanced sensitivity to a weak external force  

Martin B. Tarlie* and R. Dean Astumian ,   

* James Franck Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 
60637; and  Departments of Surgery and of Biochemistry, University of Chicago, 
5841 South Maryland Avenue, Chicago, IL 60637  

Communicated by Robert K. Adair, Yale University, New Haven, CT, November 
24, 1997 (received for review June 15, 1997)  

ABSTRACT 
 
We studied the dynamics of a Brownian particle moving in a spatially anisotropic 
potential acted on by multiplicative temporal modulations so that V(x,t) = g(t)U(x). 
Using the concept of the "thermodynamic action," we show that the class of 
modulation that maximizes the flow is a square-wave in time. We also show that 

adding a weak, homogenous force F in synergy with the square-wave modulation can 
cause particles of slightly different size to move in opposite directions. The synergetic 
change in velocity caused by F can be much greater than the drift velocity that would 
be caused by F alone.  

ARTICLE 
 
Motivated by the desire to understand energy transduction in biological systems (1, 
2), recent attention has been devoted to the dynamics of particles moving in spatially 
anisotropic potentials that are fluctuating in time (for a recent review, see ref. 3). In 
addition to the biological motivation, there is interest in the potential technological use 
of such Brownian ratchets for the purpose of manipulating particles in colloidal 
suspensions (4-6). Typically, the system is under the influence of an external potential 
V(x,t) and is in contact with an external bath that provides viscous damping of 
sufficient strength so that the inertia of the system is neglected. The system is 
described by a Langevin equation  

 [ 1 ]  

where  is the coefficient of viscous friction, x is the coordinate of the center-of-mass 
of the particle, t is time, the prime denotes spatial differentiation, and the overdot 
denotes temporal differentiation. The noise strength  is related to the temperature T 
and  by the fluctuation dissipation relation: = kBT, where kB is Boltzmann's 
constant. Throughout this paper, we assume that the random forces are weak 
compared with the characteristic forces associated with V. Finally, (t) is Gaussian 
white noise.  

Our focus is on multiplicatively modulated potentials (7-9) so that V(x,t) = g(t)U(x), 
where U(x) is an anisotropic ratchet potential (see, e.g., Fig. 1). In this case, the 
spatial average of the force is always zero. This is in contrast to the extensively 



studied (10-13) case of additive modulations where V(x,t) = U(x)  xF(t), with F(t) a 
fluctuating force with mean zero. For biological systems, which convert chemical 
energy into mass transport, multiplicative modulations are most relevant (14).  

 

Fig. 1.   Model potential U8(x) where Un(x) = Un

i=1
ne I2/(n + 1)sin(2 i(x  xn,0)/L)/i.  

 

 

In this paper, we address the question: For a given potential U(x), what is the optimal 
multiplicative temporal modulation g(t) that maximizes the flow in one direction or the 
other? We show, by using path-integral methods, that the optimal class of modulation 
is a square-wave in time, and we provide a geometric means of determining the 
modulation within the class of square-waves that maximizes the flow. Furthermore, 
adding a small, homogenous, time-independent force can cause particles of slightly 
different size to move in opposite directions, thus allowing for a continuous separation 
process. The sensitivity of this system to the weak external force is enhanced 
strongly by the optimal modulation.  

Paths of Least Action  

Our approach is to consider the path integral expression for the conditional 
probability density P(xf,tf|xi,ti) that is determined by summing over all paths that 
originate at the space-time point (xi,ti) and terminate at (xf,tf) (15-17). Each path is 
weighted by a factor exp( S[x]/ ), where S[x] is the thermodynamic action  

 

[ 2 ]  

S is positive semi-definite (i.e., S  0) so that optimal paths, which have maximum 
weight in the path integral, have zero action. Our goal is to find functions g(t) that 
result in net flow and that allow for zero action paths that connect the local minima of 
U. Such modulations will thus be optimal.  

We begin by examining the least-action paths for the unmodulated case, i.e., 
g(t) = 1. From this analysis, it will be evident how we then can modulate the system 
so as to create paths with zero action. For the potential U8(x) and taking xi = 0 and xf

 

= ±L, the least-action paths x± (see Fig. 2) were determined numerically by using an 
optimization algorithm based on Newton's method (18). The paths x± each can be 
decomposed into an uphill leg xd

± and a downhill leg xd
± with trajectories that 

approximately satisfy§  

 [ 3 ]  

and that are valid for tf  ti > ta + tb (19).  



 

Fig. 2.   Classical paths x+ (dashed curve) and x  
(solid curve) as a function of t for U8(x) (see Fig. 1) 
with tf  ti = 20 and t = 0.05, where time is 
measured in units of L2/ U.  
 

 

In Fig. 2, we see two characteristic time scales. The shorter, ta, is the time required 
for a particle, with zero initial velocity, to slide a distance a down the steeper face of 
the potential, and the longer, tb, is the time required to slide a distance b down the 
less steep face. From Eq. 3, we see that ta( ) = a+ dx/U'(x), and tb( ) = b

dx/U'(x). Up to logarithmic corrections in , we have that ta
 ~ a2/ U and tb ~ b2/ U, 

where U  U(b)  U(0).  

Optimal Modulation  

We learn from Eq. 3 inserted into Eq. 2 that for tf  ti sufficiently long¶ only the uphill 
part of the path contributes to the action and asymptotically approaches U as tf  ti 

 . The contribution from the downhill path vanishes because for this path  = 
U'. To eliminate the nonzero contribution to the action, thereby creating an optimal 
path of zero action, we simply change the plus sign that appears in the first part of 
Eq. 3 to a minus sign. This can be accomplished if g(t) is a function that switches 

between +1 and 1  in a step-like manner so that  
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where T = + +  is the period of the modulation, /T is the fraction of the period 
during which g = 1, and n is any integer. This class of modulation (a square-wave) is 
optimal in the sense that there are zero action paths, i.e., paths for which the particle 
is always travelling downhill, that connect the local minima of U. Significantly, this 
modulation effectively eliminates diffusive steps, and in the limit that U  kBT, the 
noise is relegated to the role of knocking the particles off of the potential maxima, 
with an equal probability to the right and left, when the potential is inverted.  

Maximizing Flow  

The problem that remains is to understand how the direction and magnitude of the 
flow depend on + and . Our goal is to locate the region(s) in the + plane for 
which the flow is maximized. We begin by dividing the +

 plane into eight regions 
as shown in Fig. 3. As a first step, we concentrate on how the direction of flow 
depends on the choice of parameters. It is easy to see that when + > , any flow 
that occurs must be to the left. It is always more probable for the particle to slide 
down the long leg of the potential (to the left) during the longer time period + than it is 
to slide down the long leg of the potential (to the right) during the shorter time period 

. An analogous argument, with the opposite conclusion, holds for the situation that 

+
 < . Thus, the current is antisymmetric with respect to reflection about the line 

 = + so we need only consider 
+ > .  



 

Fig. 3.     + plane divided into eight regions, 
four of which are labeled. The line + =  is a line 
of antisymmetry: When + < (>) , the velocity is 
positive (negative). The speed v is indicated for 
regions I-III.  
 

 

We now focus on determining the region of the   + plane for which the flow is 
maximized. In region I of Fig. 3, the current is not appreciable because, on average, a 
particle initially located near x = 0 when g switches from +1 to 1 does not have 
enough time to reach x = mL  a or x = mL + b when the potential reinverts at 
t = nT + . (In the limit that = 0, the flow is identically zero.) In region III, where +,

 > tb, the velocity is also essentially zero because now it is equally likely that the 
particle will make the excursion from x = mL to x = mL + b as to x = mL a in the time 

.  

Now consider regions II and IV of Fig. 3. In region II, the particle has enough time, on 
average, to make the excursion from x = mL to x = mL  a in the time but not from 
x = mL to x = mL + b. Thus, the velocity is determined by the transition probability 
from x = mL to x = (m  1)L in a time T. This probability is 1/4: a factor of 1/2 from 
the splitting probability when the potential inverts at t = nT and another factor of 1/2 
when the potential reinverts at t = nT + . Thus, in this regime, the average velocity 
is L/4T. In region IV, where ta <  < tb

 but + < tb, the dynamics is more complicated. 
When g =  1, the particle has enough time to execute a transition from x = mL to 
x = mL  a but not from x = mL to x = mL + b. However, when g = +1, the particle 
does not have time to go all the way from mL  a to (m  1)L, but because it makes 
more progress on this leg when g = +1 than when g = 1, it will eventually reach (m 
 1)L, so we still have net flow. In summary, the flow increases as the point ( , +) 
moves away from the regions = 0,  = +, and T = . Therefore, we expect that 

the maximum in the flow rate occurs near the boundary between regions II and IV.  

By performing Monte Carlo simulations of Eq. 1, we confirm the general picture that 
is outlined above and summarized in Fig. 3. However, before continuing, we need to 
remark on the dependence of the flow properties on the noise: The flow is a 
nonmonotonic function of . As   0, the flow vanishes because the particle gets 
stuck in regions where the potential force U' vanishes. On the other hand, as   , 
the effect of the potential force becomes negligible and the dynamics becomes 
diffusion-like so that again the current approaches zero. Thus, there is a maximum in 
the flow for  between the two extremes of zero and infinity. In what follows, our 
choice of  coincides with this maximum.  

The model potential used in the simulations is shown in Fig. 1. For  = 0.01 U, we 
numerically integrated Eq. 1 by using a forward Euler-differencing scheme. We 
computed the average velocity by integrating over 104 cycles of the modulation and 
taking the ratio of the distance traveled to the duration of the excursion. Plotted in Fig. 
4 is the absolute value of the average velocity as a function of and +. Dark regions 



represent low velocities, and light regions represent high velocities. The maximal 
velocities plotted in Fig. 4 are approximately L/(4T), as anticipated. These results 

confirm the picture described above. For a particle with a Stokes radius of 1 µm in 
water, L = 10 µm and a = 1 µm, and we get L/(4T)  2.5 µm/s.  

 

Fig. 4.   Monte Carlo results for the absolute value 
of the average velocity as a function of and + 
for n = 8 (a/b = 0.38). The dark regions represent 
low velocity, and the light regions represent high 
velocity.  
 

 

To summarize, we have shown that the optimal class of (multiplicative) modulation is 
a square-wave in time that switches between a positive and a negative constant and 
that within this class the velocity is maximum near the boundary between regions II 
and IV of Fig. 3. We determined the optimal class of modulation by identifying that 
these modulations allow for paths of zero action that connect the extreme points of 
U(x). We then determined the sweet spot in the   + plane by using scaling 
arguments and the topological properties of the velocity in the  + plane. In 
addition, we confirmed the general conclusions by performing Monte Carlo 
simulations and by measuring the average velocity (see Fig. 4).  

The Effect of a Homogeneous External Force  

We now extend the previous model by adding a small force F that is constant in 
space and time. We will show that, under certain conditions, the ratchet can be 
extremely sensitive to very small forces. In addition, we will show that this sensitivity 
can be utilized to have particles of different size move in opposite directions a 
phenomenon that is significant for particle segregation. An approximate formula for 
the velocity of a particle is  

 
[ 5 ]  

where P± is the probability that, if the particle starts at x = 0 at t = 0  (g switches at 
t = 0), the particle eventually ends up at x = ±L and n± is the number of cycles of the 
modulation that are required for this to take place. For simplicity of presentation, in 
what follows we restrict our attention to the regime where + >  and where + > tb so 
that n+ = n  = 1**.  

A weak homogeneous force has two significant effects. The first is that the splitting 
probabilities become different than 1/2. This is because the minima when g = +1 
(g = 1) are shifted relative to the maxima when g = 1 (g = +1). Thus, when the 
potential switches, a particle initially at the bottom of a well finds itself slightly to the 



right or left of the maximum in the new configuration. The result is that, when F 
 0, the splitting probabilities become (20)  

 
[ 6 ]  

where  

 [ 7 ]  

is an intrinsic force scale that determines the sensitivity of the splitting probability to 
an external force. The probability that the particle travels to the right is q+ = 1  q . 
We have approximated the potential in the region of the extrema as a parabola, and 
U"(0) is the curvature at the maximum. Thus, Eq. 6 does not account for the 
asymmetry of the potential but should give an accurate estimate of the effect of F on 
the splitting probability in the regime where kBT  U. For the potential shown in Fig. 

1, Ws ~ kBTL 1 , where L is the period of U.  

The second effect of the force is to change the sliding times. After the splitting has 
occurred, the center of mass of the probability distribution moves to the left or right at 
(essentially) a constant velocity that depends on the force F. The sliding times ta and 
tb are altered by a factor that depends on the direction of motion so that  

 [ 8 ]  

where + is for movement to the right and  is for movement to the left. In addition to 
the constant drift, the distribution spreads out at a constant rate that does not depend 
on the force. When g = 1, the probability H ,g = 1

± that the particle travels at least a 
distance  to the left ( ) or to the right (+) in the time can therefore be calculated, 

with the result that  
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where  
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and  

 
[ 11 ]  



Because we are treating the case that + > tb, when g = 1, the probabilities H ,g = 1
± are 

approximately unity.  

We are now in a position to determine the effect of F on the velocity. Eq. 5 is an 
expression for the velocity in terms of the probabilities P± and the average cycle times 
n±.

 Because we have restricted our attention to values of +
 > tb, n

+ = n  = 1 (21). The 
probabilities P± for movement to the right (+) and left ( ) are given by  

 [ 12 ]  

and  

 [ 13 ]  

Using these formulae, we find that, for + > tb and + > ,  

 
[ 14 ]  

where we have used the fact that H ,1
± = 1 in this regime. In Fig. 5, we compare the 

velocity from Monte Carlo simulations with the theory (cf. Eq. 14). The q± functions 
are sensitive to forces centered around 0, with a width Ws, and the H± functions are 
sensitive to forces centered about F*  with a width W. The key idea is that the velocity 
changes by O(L/T) when F changes by O(W) or O(Ws). For optimal modulation, both 

W and Ws scale as , so that if  1, then a small change in the 
force can cause a large change in the velocity. Thus, an optimally modulated ratchet 
acts as a mechanical analogue of an electrical transistor, where a small voltage can 
control a large current.  

 

Fig. 5.   Velocity v as a function of force F for = 
0.9 tb and + = 1.4 tb and  = 10 4. The closed 
circles are simulation results, and the solid curve is 
obtained from Eq. 14.  
 

 

Technological Application  

We now shift our attention to the potential application of these ideas to particle 
segregation. The ideal is for particles with different radii R to move in opposite 
directions at reasonable speeds, thereby forming the basis for a continuous (as 
opposed to batch) separation process. In the following discussion, we will show that, 
if the ratchet is operated in the appropriate manner and the appropriate force F is 
applied, it is possible to get particles of different size to move in opposite directions.  

We begin by imagining that the ratchet is operating in a regime where Ws > W. In this 
case, as long as F  Ws, the splitting probabilities q± will be 1/2 and essentially 



independent of F. Thus, examining Eq. 14, we see that, for + > , the relevant 
sliding down times are ta  and tb

+. Analogous arguments show that, for + < , the 
relevant sliding down times are ta

+ and tb . Using these results, we divide the   + 
plane in a manner analogous to that of Fig. 3, except now the relevant time scales are 
modified by the presence of F. In Fig. 6, we show this new division for F > 0. The key 
point is that the external force F breaks the anti-symmetry of the velocity about the 
line 

+ = . The contour of zero velocity, shown in Fig. 6 as the thick black segments, 
is  = (tb /tb

+) + for + < tb , and  = tb
+ for +  tb . This means that particles of 

different size can have different contours of zero velocity. We can imagine, therefore, 
that, if the ratchet is operated in the region that lies between these zero-flux contours, 
the different-sized particles will travel in opposite directions.  

 

Fig. 6.   Division of the   + plane in the 
presence of a constant force F > 0. The sliding 
down times tscrl

± are force-dependent, as described 
in the text, and the thick black line is the contour of 
zero flux.  
 

 

The above argument relies crucially on the assumption that Ws > W; if this condition 
does not hold, then the division of the   + plane as shown in Fig. 6 is not valid. In 
this case, the effect of an applied force appears predominantly in the splitting 
probability (c.f. Eq. 6). The magnitude of this effect does not depend on the properties 
of the particles, so it is not possible to cause particles to move in opposite directions 

based on their size. Indeed, for W > Ws there is no contour of zero velocity in the  
 + plane. Using Eq. 7 for Ws and Eq. 11 for W, the condition that Ws > W is 

equivalent to  > . But, because the zero flux contour is near  = tb (for 

small forces), we replace by tb = b2/ U in the above inequality and find that, for 
the potential shown in Fig. 1 and for  = tb, the ratio Ws/W  4.4. Thus, a continuous 
separation process, whereby particles of slightly different size move in opposite 
directions, is possible.  

Having seen how, in principle, it is possible to get particles of different size to move in 
opposite directions, we now show this explicitly. We imagine that we have a set of 
electrically charged particles, all with the same sign of charge. Consequently, in the 
absence of an external force, the square-wave modulation considered above has the 
property that + =  is a line of antisymmetry, independent of the size of the particle. 

Therefore, particles of different sizes may move at different speeds but not in different 
directions. However, as we have just seen, imposition of a macroscopic applied force 
F that is constant in space and time breaks this symmetry. The key idea is that the 

contour of zero flux, as indicated by the thick black line in Fig. 6, now curves upward 
(for F > 0). For + > tb , this zero-flux contour is given by  = tb

+(F). Thus, if tb
+(F) 

depends on the radius of the particle, then the velocity for particles of different size 
will change sign in different regions of the   + plane and, consequently, particles 
of different size can be made to move in opposite directions.  



To see that tb
+ = tb/(1 + Fb/ U) depends on R recall that tb = b2/ U. It is possible for 

, U, and F to depend on R. First, according to the Stokes-Einstein formula, we 
have that  ~ R. Second, if we assume that the ratchet potential is electrostatic in 
origin, then we can have U ~ R  with  = 0 (as may be appropriate for proteins) and 
 = 1,2 [as may be appropriate for coloidal particles (21)]. Third, the macroscopic 

force F can scale as R , with  =  if F is electrostatic in origin or  = 3 if F is due to 
gravity. Thus, there are many possible combinations of  and  that will result in a 
dependence of tb

+ on the radius R. The main conclusion, therefore, is that, under a 
wide variety of circumstances, it is possible to operate the ratchet in such a way that 
particles of different size will move in opposite directions.  

To illustrate this we performed Monte Carlo simulations of Eq. 1 by using U8(x) for 
particles with r = 1 µm and r = 1.2 µm immersed in water at T = 300 K. We took 
 = 6 R, where  = 1 cP is the viscosity of water, the ratchet force U' to be electrical 

with U = 2000 kBT and L = 4 µm. The magnitude of F for the 1 µm-sized particle 
was 2.05 × 10 15 N, which is the net gravitational force that can be obtained by tilting 
the apparatus by 90°. As shown in Fig. 6, the contour of zero flux for F > 0 curves 
upward and roughly hugs the line  = tb

+. Thus, if the ratchet is operated near the 
border between regions II and III, particles of different size will move in opposite 

directions. This is shown in Fig. 7, where we plot the average velocity v as a function 
of for T 1 = 2.2 Hz for various combinations of  and . In all cases, there are 
values of for which the 1 µm- and 1.2 µm-sized particles travel in opposite 
directions.  

 

Fig. 7.   Curve C: particle of radius R = 1 µm, 
density 1.05 g·cm 3, in water at T = 300 K, subject 
to a constant force F = 2.05 × 10 15 N. Curves A, 
B, and D-F: R = 1.2 µm, U ~ R , and F ~ R . A, 
 = 0,  = 0; B,  = 0,  = 3; D,  = 1,  = 3; E,  = 2, 

 = 2; F,  = 2,  = 3. Average velocity as a function 
of for T = 0.46 s.  
 

 

Summary and Conclusion  

In summary, we have sketched out a conceptual framework for understanding how to 
optimize the velocity of a small particle induced by deterministic modulation of a 
ratchet potential. This provides a firm theoretical base for the two main results of this 

paper. (i) A weak external force (e.g., gravity for a 1-µm latex sphere in water) in 
synergy with the optimal modulation can allow particles of slightly different size to 
move in opposite directions. This suggests approaches for implementation of 
continuous separation techniques for microscopic particles and biopolymers. And (ii) 

The sensitivity to the weak external force is enhanced by the optimal modulation, thus 
allowing a weak force to control a large current a mechanical analogue of a 
transistor.  

ACKNOWLEDGEMENTS 

We thank Eli Ben-Naim, Martin Bier, Imre Derenyi, Sue Coppersmith, Leo Kadanoff, 
Jiri Maly, and Tom Witten for helpful discussions and comments. This work was 



supported in part by the Materials Research Science and Engineering Centers 
Program of the National Science Foundation (DMR-9400379) (to M.B.T. and R.D.A.), 
and National Institutes of Health Grants R29ES06620 and RO3ES08913 (to R.D.A.).  

FOOTNOTES 

To whom reprint requests should be addressed.  

§ These approximate inequalities become exact in the limit that T  .  

¶ For g(t) = 1, Sc
+ and Sc  are equal and are monotonically decreasing functions of 

tf  ti that approach U as tf  ti  .  

In general, we could have taken g to switch between one positive and one negative 
constant. This alters ta and tb

 but does not affect the basic results.  

** Although we were able to obtain an approximate analytic formula for v( , +) in the 
entire   + plane, for clarity of presentation we have concentrated on the regime 

where n+ and n  are approximately unity.  

 


